A CHANGE OF VENUE
Human astrocytes (large yellow-green cells with white nuclei) grow in the brain of a 10-month-old mouse. Mouse cell nuclei are stained blue. Mice with human astrocytes implanted in their brains perform better on learning and memory tests than normal mice do, suggesting that human astrocytes are better than their rodent counterparts at modulating learning.
WELL-CONNECTED
A human astrocyte (green) sends out more tentacles and monitors many more neuron-to-neuron connections than mouse astrocytes (red) do. Mice with human astrocytes implanted in their brains do better on learning and memory tests than normal mice do, suggesting that human astrocytes are better than their rodent counterparts at modulating learning.
X. Han et al/Cell Stem Cell 2013
The researchers also noticed something curious in the brains of mice that had received human cell transplants. “The shocker was that all the glial progenitors were human and had completely taken over the mouse progenitors,” Goldman says. The finding made the researchers wonder what effect human cells might have on otherwise normal mice.
Although many neuroscientists essentially ignore glia, it is becoming clear that the cells — which make up about 90 percent of the brain — are more important than some people believe. Astrocytes are required for nerve cells, or neurons, to make connections, called synapses, with each other. While neurons pretty much look and behave the same from species to species, human astrocytes are much larger and more complex than those from other species, leading some scientists to wonder whether the cells are at least partly responsible for the human brain’s computing power.
To find out, the Rochester researchers tested human glial progenitor cells in the brains of normal mice. By the time the mice were 6 months old, the human cells had pushed out the mouse progenitor cells and replaced many of the mouse astrocytes with human astrocytes. Some mice got a transplant of mouse glial progenitors instead of human cells to make sure any effect was due to the action of human cells and not to having extra brain cells.
Astrocytes use calcium to communicate. In lab dish tests, human astrocytes passed calcium signals three times faster than mouse astrocytes did. And the human astrocytes helped forge stronger synapses between mouse neurons than the mouse’s own astrocytes did.
The researchers also put mice through a battery of tests, probing the animals’ ability to learn mazes, distinguish new objects from old ones, and learn that a certain sound portends a mild electric shock. It took normal mice and mice with mouse cell transplants several tries to pick up on the association between the sound and the shock. Mice with human astrocytes “pretty much picked up the association immediately and got more fearful,” Goldman says.
Since the mice have their own neurons, the memory boost must have come from the human cells, the researchers conclude. While evidence points to the astrocytes as the source of the enhancement, the researchers can’t rule out that undeveloped progenitor cells might also contribute.
In any case, the results indicate that human cells not only aid in learning and memory, but do it better than their rodent counterparts do.
“It’s a stunning result. It provides the first unequivocal evidence that astrocytes may well have been one of the evolutionary drivers of human capabilities,” says Bruce Ransom, a neuroscientist at the University of Washington. “As completely outrageous as it sounds, I think the evidence is such now that we have to take that very seriously.”
Leave a Reply